43 research outputs found

    Detailed quantitative description of fluvial reservoirs: A case study of L6-3 Layer of Sandgroup 6 in the second member of Shahejie Formation, Shengtuo Oilfield, China

    Get PDF
     The steady development of the oil field is facing severe challenges due to the problems of small-layer division, unclear genesis period and unclear river channel distribution in the 4-6 sand formation in the second district of Shengtuo Oilfield. Based on the processing and optimization of logging data, this paper firstly divided the isochronous strata and established the high-resolution isochronous stratigraphic framework. Using the geo-statistics method in the stratigraphic framework, the sand bodies in each small layer were divided according to the principle of equal time of fluvial facies. On this basis, the distribution pattern of the sand bodies in each stage was simulated by the magnetic random walk model. The magnetic random walk model has obtained robust simulation results, which is consistent with the anatomy of reservoir architectures by experienced geologists. The results also show that the number of channels in each small-layer is different, while the overall distribution of NE direction is reflected. At present, the model can well simulate the position of the main channel line, but it cannot reflect the variation of the river width. The method of quantitative fine description based on logging data has great potential application in fluvial reservoir, especially the magnetic random walk model that can reveal the distribution of sand body in every stage. At the same time, the model can also reflect certain randomness and facilitate the uncertainty analysis of geological factors.Cited as: Li, J., Yan, K., Ren, H., Sun, Z. Detailed quantitative description of fluvial reservoirs: A case study of L6-3 Layer of Sandgroup 6 in the second member of Shahejie Formation, Shengtuo Oilfifield, China. Advances in Geo-Energy Research, 2020, 4(1): 43-53, doi: 10.26804/ager.2020.01.0

    Abnormal metabolite concentrations and amygdala volume in patients with recent-onset posttraumatic stress disorder

    Get PDF
    Background Previous psychoradiological studies of posttraumatic stress disorder (PTSD) were mainly of patients at a chronic stage, focusing on brain regions outside the amygdala. The goals of this study were to investigate the early biochemical and structural changes of anterior cingulate cortex (ACC) and amygdala in patients with PTSD and to explore their relationships. Methods Seventy-eight drug-naïve PTSD subjects and 71 non-PTSD age- and sex-matched control subjects were enrolled, all of whom had suffered the same earthquake about one year before. Single-voxel proton magnetic resonance spectroscopy (1H-MRS) was performed and absolute metabolite concentrations in ACC and bilateral amygdalae were estimated with LCModel. Bilateral amygdalae were manually outlined and their volumes were calculated and corrected for the total intracranial volume. Results The PTSD group showed significantly increased N-acetylaspartate (NAA) concentration in the ACC, increased creatine (Cr) concentration in the left amygdala, and increased myo-inositol (mI) concentration in the right amygdala, compared to non-PTSD controls. The NAA concentration in ACC was negatively correlated with the time since trauma. The PTSD group showed significantly decreased volumes of bilateral amygdalae compared to non-PTSD controls, but amygdala volumes were not correlated with metabolite concentrations. Limitations Longitudinal studies are needed to explore the metabolic and structural changes of PTSD at different stages. The volume of ACC was not measured. Conclusions This concurrent increase in some metabolite concentrations and decrease of amygdala volumes may represent a pattern of biochemical and morphological changes in recent-onset PTSD which is different from that reported in chronic PTSD

    Gray Matter Atrophy Is Associated With Cognitive Impairment in Patients With Presbycusis: A Comprehensive Morphometric Study

    Get PDF
    Presbycusis (PC) is characterized by bilateral sensorineural hearing loss at high frequencies and speech-perception difficulties in noisy environments and has a strikingly detrimental impact on cognitive function. As the neural consequences of PC may involve the whole brain, we hypothesized that patients with PC would show structural alterations not only in the auditory cortex but also in the cortexes involved in cognitive function. The purpose of this study was to use surface-based morphometry (SBM) analysis to elucidate whole-brain structural differences between patients with PC and age-matched normal hearing controls. Three-dimensional T1-weighted MR images of 26 patients with mild PC and 26 age-, sex- and education-matched healthy controls (HCs) were acquired. All participants underwent a battery of neuropsychological tests. Our results revealed gray matter atrophy in several auditory cortical areas, nodes of the default mode network (DMN), including the bilateral precuneus and inferior parietal lobule, the right posterior cingulate cortex (PCC), and the right insula of patients with PC compared to that in the HCs. Our findings also revealed that hearing loss was associated with reduced gray matter volume in the right primary auditory cortex of patients with PC. Moreover, structural alterations in the nodes of the DMN were associated with cognitive impairments in PC patients. Additionally, this study provides evidence that a thicker right insula is associated with better speech perception in patients with PC. Based on these findings, we argue that the onset of PC seems to trigger its own cascade of conditions, including a need for increased cognitive resources during speech comprehension, which might lead to auditory and cognition-related cortical reorganization

    Disrupted brain functional networks in patients with amblyopia: a resting-state fMRI study

    No full text
    PURPOSE: To explore the topological properties of brain functional networks derived from resting-state functional magnetic resonance imaging in patients with amblyopia. METHODS: Seventeen amblyopic subjects and twenty control subjects were recruited to undergo a resting-state functional magnetic resonance imaging scan. The whole-brain functional networks were constructed for each subject, and topological properties such as small-worldness, network effciency and nodal centrality were quantitatively analyzed with graph theoretical analysis. RESULTS: Both the amblyopic and control groups exhibited small-world properties in brain functional networks, which means a balance between local segregation and global integration for visual information processing. However, compared with control subjects, patients with amblyopia showed altered quantitative values of brain functional networks, characterized with decreased clustering coefficient, lower characteristic path length and decreased network effciency. Topological properties are also significantly altered in some brain regions. These alterations support the disrupted topological organization of brain functional networks in patients with amblyopia. CONCLUSIONS: Amblyopia is partly resulted from the deficits of visual information transmission. Detection and estimation of altered brain functionl networks can help to further understand the pathophysiological mechanism underlying amblyopia.</p
    corecore